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CHARGES IN AN ELECTRIC FIELD 
 
CONTENT – POTENTIAL ENERGY AND WORK 
A charge in an electric field is analogous to an object in a gravitational field. An object positioned at higher 
gravitational potential energy will, if unrestrained, naturally move towards lower potential energy. In this situation, 
work is done by the gravitational force. If we move the object from a position of lower gravitational potential 
energy to higher potential energy, then  work is done by the external force used to move it. Similarly, a charge in 
an electric field, will, if unrestrained, naturally move from a higher to lower electric potential energy. The reverse 
movement from a posiition of lower electrical potential energy will require an external force to do the work. This 
is illustrated in the diagram below for a charged particle in an electric field created by two conducting parallel 
plates. The arrows represent the electric field direction. 
 

 
 
The potential difference between two points A and B in the electric field is defined as the amount of work done in  
moving a unit charge from A to B and is given by 

𝑉 =
∆𝑈
𝑞 =

𝑈& − 𝑈(
𝑞  

Where ∆𝑈 is the difference in potential energy between point A and B and 𝑞 is the charge of the particle. 𝑉 is   
the potential difference or voltage and is given in units of Volts (V) (This concept is important when we deal with 
electric circuits).  
 

 
 
CONTENT – EQUIPOTENTIAL LINES 
The electric potential can be represented graphically by drawing lines that are perpendicular to the electric field. 
These lines represent the points at which the electric potential energy is the same. Hence the name 
equipotential lines. The concept of equipotential lines in two dimensions can be extended to equipotental 
surfaces in three dimensions.  For two parallel conducting plates, the equipotential surfaces are surfaces  
parallel to the plates.  
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Since the electric potential along an equipotential line is the same, no work is done moving a charged particle 
along the equipotential line. However, moving the particle from one equipotential line to another will require work 
either by the electric field or an external force. 

 
Below are two more examples of equipotential lines for a single positive charge and for two positive charges. 
Red lines represent the electri field lines while the dashed lines represent the equipotential lines. 

 
 
QUESTION 1 
Calculate the amount of work done by an electric field (1.0 V/m) on a particle with a charge of 1.0 C that moves 
along an equipotential surface. 
 
QUESTION 2 - PENCIL 
Draw the equipotential lines for the positive and negative charges below. 
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WORKED EXAMPLE – SERIES CIRCUIT 
Find the voltage running through each resistor for the 
series circuit on the right. The resistance values are 
𝑅" = 1	Ω, 𝑅( = 2	Ω	and	𝑅- = 5	Ω. 

 
 

Þ We have three resistors connected in series, and according to Kirchoff’s Current Law, the current passing 
through each resistor is the same. Thus, if we know the total current is running through the circuit, we know 
the current running through each resistor. 

Þ We start by combining the three resistors 
connected in series into one equivalent resistor 

 

 

𝑅/ = 𝑅" + 𝑅( + 𝑅- 
= 1	Ω + 2	Ω + 5	Ω 
= 8	Ω 

Þ The total current running through the whole circuit 
is: 

𝑉 = 𝐼𝑅 

𝐼/ =
𝑉/
𝑅/

=
9	V
8	Ω = 1.125	A 

Þ Thus, the voltage across each resistor is: 

𝑉89 = 𝐼/𝑅" 
= 1.13	A × 1	Ω 
= 1.125	V 

𝑉8< = 𝐼/𝑅( 
= 1.13	A × 2	Ω 
= 2.250	V 

𝑉89 = 𝐼/𝑅" 
= 1.13	A × 5	Ω 
= 5.625	V 

Þ To check if we calculated the voltage correctly, 
make sure the sum of the voltages across each 
resistor is equal to 9.0	V (Kirchoff’s Voltage Law). 

𝑉/ = 𝑉89 + 𝑉8< + 𝑉8? 
= 1.125	V + 2.250	V + 5.626	V 
= 9.0	V 

 
WORKED EXAMPLE – PARALLEL CIRCUIT 
Find the current running through each resistor for the 
parallel circuit on the right. The resistance values are 
𝑅" = 1	Ω, 𝑅( = 2	Ω	and	𝑅- = 5	Ω. 

 

 
Þ The three resistors are connected in parallel and the current entering and exiting the node of the resistors 

is the same. The voltage across each resistor is the same. 
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Þ We combine the three resistors into on equivalent 
resistor 

 

1
𝑅/

=
1
𝑅"
+
1
𝑅(
+
1
𝑅-

 

=
1
1	Ω +

1
2	Ω +

1
5	Ω 

=
17
10	Ω 

𝑅/ =
1

17/10	Ω 

= 0.59	Ω 

Þ The total current running through the whole circuit 
is: 

𝑉 = 𝐼𝑅 

𝐼/ =
𝑉/
𝑅/

=
9	V

0.59	Ω = 15.3	A 

Þ The voltage running through each resistor is 9	V, and thus the current through each resistor is: 

𝐼89 =
𝑉/
𝑅"

 

=
9	V
1	Ω 

= 9.0	A 

𝐼8< =
𝑉/
𝑅(

 

=
9	V
2	Ω 

= 4.5	A 

𝐼8? =
𝑉/
𝑅-

 

=
9	V
5	Ω 

= 1.8	A 
Þ Check that the sum of the currents is equal to the 

total current: 
Þ Observe that adding resistances (e.g. 1	Ω, 2	Ω 

and 5Ω) in parallel decreases the total resistance 
(0.59	Ω)  

𝐼/ = 𝐼" + 𝐼( + 𝐼- 
= 9.0	A + 4.5	A + 1.8	A 
= 15.3	A 

 
WORKED EXAMPLE – COMBINED SERIES AND 
PARALLEL CIRCUIT 
Find the voltage and current running through each 
resistor for the series-parallel circuit on the right. The 
resistance values are 𝑅" = 1	Ω, 𝑅( = 2	Ω	and	𝑅- =
5	Ω. 

 

 
Þ For this circuit, the current flows through 𝑅" in series and then splits on a node to 𝑅( and 𝑅- in parallel. 

Much like solving the series and parallel only circuit we want to reduce the circuit into a one resistor circuit. 

Þ We first combine the resistors connected in parallel and then combine the resistors in series. Pictorially we 
perform the transformation below. 
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Þ Below is the working out of combining the resistors as shown above 
1
𝑅(-

=
1
𝑅(

+
1
𝑅-

 

=
1
2	Ω +

1
5	Ω 

=
7

10	Ω 

𝑅(- =
1
7

10	𝛺
	

= 1.43	𝛺 

𝑅/ = 𝑅(- + 𝑅" 
= 1.43	Ω + 1	Ω 
= 2.43	Ω 

Þ The total current is: 𝑉 = 𝐼𝑅 

𝐼/ =
𝑉/
𝑅/

=
9.0	V
2.43	Ω = 3.70	A 

Þ Once we have the total current, we work our way back and expand the circuit to get the current and voltages 

Þ The current is constant for resistors connected in 
series. Thus 3.70	A flows through both 𝑅(- and 
𝑅". 

 

Þ The voltage across 𝑅(- and 𝑅" is: 

𝑉8<? = 𝐼/𝑅(- 
= 3.70	A	 × 1.43	Ω 
= 5.30	V 

 
𝑉89 = 𝐼/𝑅" 

= 3.70	A	 × 1	Ω 
= 3.70	V 

Þ Check sum of voltage is equal to 9.0	V: 
𝑉/ = 𝑉8<? + 𝑉89 
= 5.30	V + 3.70	V 
= 9.0	V 

Þ Now that we have the voltage running through 𝑅(- we can calculate the current through 𝑅( and 𝑅-. 

𝐼8< =
𝑉8<?
𝑅(

 

=
5.29	V
2	Ω  

= 2.65	A 

𝐼8? =
𝑉8<?
𝑅-

 

=
5.29	V
5	Ω  

= 1.05	A 

 

Þ Check that the sum of the currents is equal to 
3.70	A 

𝐼8<? = 𝐼8< + 𝐼8? 
= 2.65	A + 1.05	A 
= 3.70	A 

Þ Summary of the current and voltages: 

Voltage (V) Current (A) 
𝑉" 3.70 𝐼" 3.70 
𝑉( 5.30 𝐼( 2.65 
𝑉- 5.30 𝐼- 1.05 
𝑉T 9.00 𝐼T 3.70 
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ELECTRIC CIRCUITS 
CONTENT – OHM’S LAW 
Ohm’s law relates the voltage (i.e. potential difference V) with the current and resistance of an ideal conductor. 
The law states that 

𝑉 = 𝐼𝑅 
where 𝐼 is the currrent and 𝑅 is the resistance of the 
conductor. The units for current and resistance is 
Ampere (A) and Ohm (Ω) respectively. The current is 
a measure of the flow of electrons in the circuit and is 
inversely proportional to the resistance. Hence, a 
large resistance will reduce the flow of electrons. As 
an analogy, this is similar to water flowing through a 
tube. A narrow tube will reduce the amount of water 
flowing through whilst larger tube will allow more 
water to flow through. 

As a simple example, consider a one resistor circuit connected to 
a battery on the right. The battery provides a source of 9 V, and 
the resistance of the resistor is 2 Ω. With the information we have, 
we can calculate the current flowing through the resistor using 
Ohm’s law. The current flowing through the 2 Ω resistor is 𝐼 =
𝑉/𝑅 = 9	V/2	Ω = 4.5	A. If the resistance is doubled to 4	Ω the 
current is reduced to 2.25 A. 

It is important to note that resistors can either be ohmic or non-
ohmic. Ohmic resistors have a constant resistance, hence in the 
equation above, if a resistor is an ohmic resistor with a constant resistance, then the graph of velocity against time 
is a straight line. In the case of non-ohmic resistors, where resistance in a resistor varies with, say current, then 
the graph of velocity against time is not a straight line. In the case of latter, the resistor is said not to obey Ohm’s 
Law.  
CONTENT – SERIES CIRCUITS 
For a single resistor circuit like the circuit above applying Ohm’s law is trivial. However, when more than one 
resistor is connected in either series or parallel, then Ohm’s law cannot be applied the same way. For resistors 
connected in series (i.e. connected next to each other) the current flowing through each resistor is the same, but 
the voltage is divided amongst the resistors. For the circuit below with an incoming voltage of 𝑉/, the voltage drop 
after passing through 𝑅0 is 𝑉/ − 𝑉0. Then the voltage drop after passing through 𝑅2 is 𝑉/ − 𝑉0 − 𝑉2 and similarly for 
𝑅3. Thus, after passing through each resistor the potential of the current flow decreases. If all resistors in series 
have same resistance, then the voltage drop across each resistor is the same. However, in the case of resistors 
with different resistance, the resistor with a greater resistance will result in the greatest voltage drop.  

 

 
We can also use the analogy of water flowing from a higher to lower potential energy. Each drop in potential energy 
represents the electric current flowing through a resistor. When the water flows horizontally, there is no change in 
potential energy (like an electric current flowing through the wire). The sum of each potential energy drop is equal 
to the total potential energy the water is at initially. In electric circuits, this is called the Kirchoff’s Voltage Law 
(KVL), which states that the total potential difference in a closed circuit is equal to zero (i.e. conservation of energy). 
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𝑉456758 = 𝑉/ = 𝑉0 + 𝑉2 +⋯+ 𝑉; 
The total resistance of resistors connected in series can be calculated by summing up the resistance value of each 
resistor. 

𝑅456758 = 𝑅/ = 𝑅0 + 𝑅2 +⋯+ 𝑅; 
The total resistance is also called the equivalent resistance, and we can reduce the multi-resistor circuit to one 
equivalent resistor. 

CONTENT – PARALLEL CIRCUITS 
For resistors connected in parallel the voltage flowing through each resistor is the same but the current is divided, 
which is the opposite behaviour to resistors connected in series. Consider the image of water tubes below where 
the flow of water splits into three tubes of different widths (point A). The amount of water flowing through tube 1 to 
3 depends on the width of the tubes. As the water reaches the exit junction, point B, the current flow returns to the 
same state as the current it enters in at point A. The potential difference, however, is the same in tubes 1 to 3. 

 

 

Similarly, for an electric circuit, the sum of the electric current flowing through each resistor connected in parallel 
is equal to the total current flowing into or out of the node/junction. This behaviour is known as the Kirchoff’s 
Current Law (KCL), which states that the total current entering a node is equal to the total current exiting the node 
(i.e. conservation of charge). Mathematically this is written as 

𝐼<=6=>>5> = 𝐼/ = 𝐼0 + 𝐼2 + ⋯+ 𝐼; 
The equivalent resistance of resistors connected in parallel is calculated by summing up the reciprocal of each 
resistance value 

1
𝑅<=6=>>5>

=
1
𝑅0
+
1
𝑅2
+⋯+

1
𝑅;
	

Transforming the resistors connected in parallel into one equivalent resistor 

SUMMARY 
The table below summarises the general behaviour of current and voltage in circuits. 

Resistor Connection Voltage Current 
Series  Divided Constant 
Parallel  Constant Divided 
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WORKED EXAMPLE – SERIES CIRCUIT 
Find the voltage running through each resistor for the 
series circuit on the right. The resistance values are 
𝑅0 = 1	Ω, 𝑅2 = 2	Ω	and	𝑅3 = 5	Ω. 

 
 

Þ We have three resistors connected in series, and according to Kirchoff’s Current Law, the current passing 
through each resistor is the same. Thus, if we know the total current is running through the circuit, we know 
the current running through each resistor. 

Þ We start by combining the three resistors 
connected in series into one equivalent resistor 

 

 

𝑅/ = 𝑅0 + 𝑅2 + 𝑅3 
= 1	Ω + 2	Ω + 5	Ω 
= 8	Ω 

Þ The total current running through the whole circuit 
is: 

𝑉 = 𝐼𝑅 

𝐼/ =
𝑉/
𝑅/

=
9	V
8	Ω = 1.125	A 

Þ Thus, the voltage across each resistor is: 

𝑉EF = 𝐼/𝑅0 
= 1.13	A × 1	Ω 
= 1.125	V 

𝑉EI = 𝐼/𝑅2 
= 1.13	A × 2	Ω 
= 2.250	V 

𝑉EF = 𝐼/𝑅0 
= 1.13	A × 5	Ω 
= 5.625	V 

Þ To check if we calculated the voltage correctly, 
make sure the sum of the voltages across each 
resistor is equal to 9.0	V (Kirchoff’s Voltage Law). 

𝑉/ = 𝑉EF + 𝑉EI + 𝑉EL 
= 1.125	V + 2.250	V + 5.626	V 
= 9.0	V 

 
WORKED EXAMPLE – PARALLEL CIRCUIT 
Find the current running through each resistor for the 
parallel circuit on the right. The resistance values are 
𝑅0 = 1	Ω, 𝑅2 = 2	Ω	and	𝑅3 = 5	Ω. 

 

 
Þ The three resistors are connected in parallel and the current entering and exiting the node of the resistors 

is the same. The voltage across each resistor is the same. 
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Þ We combine the three resistors into on equivalent 
resistor 

 

1
𝑅/

=
1
𝑅0
+
1
𝑅2
+
1
𝑅3

 

=
1
1	Ω +

1
2	Ω +

1
5	Ω 

=
17
10	Ω 

𝑅/ =
1

17/10	Ω 

= 0.59	Ω 

Þ The total current running through the whole circuit 
is: 

𝑉 = 𝐼𝑅 

𝐼/ =
𝑉/
𝑅/

=
9	V

0.59	Ω = 15.3	A 

Þ The voltage running through each resistor is 9	V, and thus the current through each resistor is: 

𝐼EF =
𝑉/
𝑅0

 

=
9	V
1	Ω 

= 9.0	A 

𝐼EI =
𝑉/
𝑅2

 

=
9	V
2	Ω 

= 4.5	A 

𝐼EL =
𝑉/
𝑅3

 

=
9	V
5	Ω 

= 1.8	A 
Þ Check that the sum of the currents is equal to the 

total current: 
Þ Observe that adding resistances (e.g. 1	Ω, 2	Ω 

and 5Ω) in parallel decreases the total resistance 
(0.59	Ω)  

𝐼/ = 𝐼0 + 𝐼2 + 𝐼3 
= 9.0	A + 4.5	A + 1.8	A 
= 15.3	A 

 
WORKED EXAMPLE – COMBINED SERIES AND 
PARALLEL CIRCUIT 
Find the voltage and current running through each 
resistor for the series-parallel circuit on the right. The 
resistance values are 𝑅0 = 1	Ω, 𝑅2 = 2	Ω	and	𝑅3 =
5	Ω. 

 

 
Þ For this circuit, the current flows through 𝑅0 in series and then splits on a node to 𝑅2 and 𝑅3 in parallel. 

Much like solving the series and parallel only circuit we want to reduce the circuit into a one resistor circuit. 

Þ We first combine the resistors connected in parallel and then combine the resistors in series. Pictorially we 
perform the transformation below. 
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Þ Below is the working out of combining the resistors as shown above 
1
𝑅23

=
1
𝑅2

+
1
𝑅3

 

=
1
2	Ω +

1
5	Ω 

=
7

10	Ω 

𝑅23 =
1
7

10	𝛺
	

= 1.43	𝛺 

𝑅/ = 𝑅23 + 𝑅0 
= 1.43	Ω + 1	Ω 
= 2.43	Ω 

Þ The total current is: 𝑉 = 𝐼𝑅 

𝐼/ =
𝑉/
𝑅/

=
9.0	V
2.43	Ω = 3.70	A 

Þ Once we have the total current, we work our way back and expand the circuit to get the current and voltages 

Þ The current is constant for resistors connected in 
series. Thus 3.70	A flows through both 𝑅23 and 
𝑅0. 

 

Þ The voltage across 𝑅23 and 𝑅0 is: 

𝑉EIL = 𝐼/𝑅23 
= 3.70	A	 × 1.43	Ω 
= 5.30	V 

 
𝑉EF = 𝐼/𝑅0 

= 3.70	A	 × 1	Ω 
= 3.70	V 

Þ Check sum of voltage is equal to 9.0	V: 
𝑉/ = 𝑉EIL + 𝑉EF 
= 5.30	V + 3.70	V 
= 9.0	V 

Þ Now that we have the voltage running through 𝑅23 we can calculate the current through 𝑅2 and 𝑅3. 

𝐼EI =
𝑉EIL
𝑅2

 

=
5.29	V
2	Ω  

= 2.65	A 

𝐼EL =
𝑉EIL
𝑅3

 

=
5.29	V
5	Ω  

= 1.05	A 

 

Þ Check that the sum of the currents is equal to 
3.70	A 

𝐼EIL = 𝐼EI + 𝐼EL 
= 2.65	A + 1.05	A 
= 3.70	A 

Þ Summary of the current and voltages: 

Voltage (V) Current (A) 
𝑉0 3.70 𝐼0 3.70 
𝑉2 5.30 𝐼2 2.65 
𝑉3 5.30 𝐼3 1.05 
𝑉T 9.00 𝐼T 3.70 
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HEATING EFFECTS OF ELECTRIC CURRENTS 
 
 
CONTENT – CONSERVATION OF ENERGY 
An electric current that passes through an electric component will have its potential 
energy dropped by a certain amount (potential difference or voltage). Following the 
circuit on the right, the electric current flows from a source starting from the positive 
terminal. As the current passes through the resistor, the potential energy of the 
electric current drops between point A and B. Finally, the current flows to the 
negative terminal completing the circuit. Following the law of conservation of 
energy, the drop in potential energy from point A to B must be transformed into a 
different kind of energy (the energy loss across the resistor cannot be destroyed). 
For a resistor, the electrical energy is transferred into heat (electrical to thermal). 
Other devices connected similarly will convert the electrical energy differently. 
Examples include electric current passing through a motor connected to a 
mechanical load, light bulb and a storage battery. The electrical energy is 
transferred as work done on the mechanical load (electrical to mechanical), converted to light (electrical to 
electromagnetic) and transferred to a stored chemical in the battery (electrical to chemical). 

 
 
CONTENT – POWER IN CIRCUITS 
The transfer of energy is quantitatively described with a variable called power, 𝑃. The units for 𝑃 is joule/sec or 
Watts, hence it is a measure of the amount of energy transferred per second or unit time. The power transferred 
from electric current is given by the voltage multiplied by the current. 
 𝑃 = 𝑉𝐼 (1) 

To check if the expression above is correct, we will look at the units of both voltage and current. Voltage is defined 
as the amount of work done per unit charge (joule/coulomb), and current is the flow of charge per unit time 
(coulomb/sec). Thus, if we have 1 Volt and 1 Amp the multiplication of the two is 
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1
Joule

Coulomb
× 1

Coulomb
sec

= 1
Joule
sec

or	1	Watt 

which is the unit for power. We can combine Ohm’s law with the power equation above to get the dissipation rate 
of electrical energy across a resistor. Ohm’s law is usually written as 𝑉 = 𝐼𝑅 and if we substitute Ohm’s law into 
equation (1) we get  
	 𝑃 = (𝐼𝑅) × 𝐼 = 𝐼9𝑅 (2) 

If instead, we write Ohm’s law as 𝐼 = 𝑉/𝑅 then power dissipated across the resistor is 

 𝑃 = 𝑉 × ;
𝑉
𝑅< =

𝑉9

𝑅
	 (3) 

In the case of a series circuit, where current is the same across all resistors, the resistor with the greater resistance 
will have a greater power dissipation. In other words, if current 𝐼 stays the same in equation 2), then the greater 
the resistance, the greater the power dissipation. In the case of a parallel circuit, however, where voltage across 
the resistors stays the same, the resistor with the greater resistance will have a smaller power dissipation. This 
can be explained by visualising voltage 𝑉 as a constant in equation 3) and varying the resistance 𝑅.   

It is important to remember that equation (1) is the rate of transfer of electrical energy to all forms of energy. 
Equation (2) and (3) gives the rate of transfer of electrical energy to thermal energy for an electrical component 
with resistance. This behaviour of electric current in circuits is used in the design of electric heaters. 

 
QUESTION 1 
A 30 Ω resistor is connected to a 9.0 V battery as shown on the circuit on the 
right.  

a) How much work is done on moving an electron across the resistor? 
b) What is the rate of energy transferred into heat across the resistor? 
c) How much thermal energy is produced in 1 hour? 

ans: (a) 9.0 J (b) 2.7 W (c) 9.7 kJ 
 
QUESTION 2 
Heat is generated in a resistor at a rate of 50 W. If the current running through the resistor is 1.5 A what is the 
resistance value of the resistor? What is potential difference across the resistor? 

ans: R=22.2 Ω and V=33.3 V 
 
QUESTION 3 
The standard voltage in Australia is 230 V and if a 1000 W heater is plugged into an outlet, find: 

a) The amount of current flowing through the heater 
b) The resistance of the heater 
c) The total cost of continuously running the bulb for seven days if it cost 12.5 cents/(kW.h) 

ans: (a) 4.3 A (b) 53.5 Ω (c) $21.00 

 
QUESTION 4 INTERNET RESEARCH 

a) Investigate the physics of fireworks in terms of energy conversions. How many energy conversions can 
you list? 

b) Research the power consumption of common household appliances. Pick one appliance and study the 
energy rating of that appliance. What does the star rating mean?   
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 FERROMAGNETS 
 
CONTENT 
Ferromagnets are materials that have special magnetic properties.  Iron is the most common ferromagnetic 
material, but other metals, including rare earths, can be used.  By themselves, ferromagnetic materials are not 
magnets and on a large scale they show no overall magnetisation.  But on a smaller scale, if a magnet is placed 
near a ferromagnetic material, it can make regions of aligned magnetisation.  These are called domains.  Each 
domain acts as a small internal bar magnet and the alignment of each domain is random compared to the other 
domains, as shown below.  As a result on a large scale the internal magnetic fields mostly cancel each other out 
and the overall magnetisation is minimal.   

Ferromagnetic material can be made into a permanent bar magnet by placing it within a strong magnetic field 
and heating it.  This causes all the magnetic fields within the domains to align and produce an overall bar 
magnet, as in the picture below.  Note the north and south poles of the ferromagnet are opposite to the north and 
south poles of the original magnets. That is why iron is attracted to magnets. When the domains align in a 
magnetic field, they align in such a way that the ferromagnetic material is attracted to the magnets.  

The domains act like mini internal bar magnets because of the coupling of electron spins in neighbouring atoms.  
The electrons in every atom have magnetic moments. In each domain the magnetic moments of the electrons in 
all the atoms tend to point in the same direction, giving the domain an overall magnetic moment in that direction.  
So when the ferromagnetic material is exposed to a strong magnetic field, all the magnetic moments in each 
domain align.    
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EXAMPLE 
Using your understanding of ferromagnetic material, explain how iron filings (small particles of iron) can be used 
to display magnetic fields.   
 

Þ So, firstly, we know that iron is a ferromagnetic material so it’s very responsive to magnets.  They also 
have domains which have aligned magnetisation.  When a magnet is placed inside or near the iron 
filings, the domains within the iron filings become aligned.  Due to the shape of the iron filings, their 
lowest energy configuration has the magnetisation aligned along the longest side of each individual iron 
filing. Like all ferromagnets in the presence of a strong magnetic field, the ferromagnets align in the 
opposite direction of the magnetic field.  This means they wish to stay within the magnetic field.  The iron 
filings are also small enough that the friction of the surface is usually too small to stop the iron filings 
from moving. So each individual iron filing will move so that its longest side is aligned in the direction of 
the magnetic field.  
Thus, the iron filings move to point along the direction of the magnetic field, allowing us to see what the 
magnetic field lines look like. In the diagram below, the red lines are the magnetic field lines and the 
small black lines represent the iron filings.  
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 MAGNETIC FIELDS OF WIRES AND SOLENOIDS 
 
CONTENT 
A current-carrying wire produces a magnetic field.  We can use this property to generate strong magnetic fields 
and convert electrical energy into mechanical energy.  In this worksheet, we will first look at the magnetic fields 
of a current-carrying wire and then of a solenoid.   
 
The direction of the induced magnetic field, 𝐵, from a current-carrying wire depends on the direction of the 
current, 𝐼, itself.  We use the Right Hand Palm Rule to figure out the direction.  By pointing your thumb in the 
direction of the current and curling your fingers around the wire, the direction of the curl represents the direction 
of the magnetic field.  To draw the magnetic field, we use ‘X’s to represent the magnetic field going into the page 
and circles with dots to represent the field coming out of the page. An easy way to remember this is that the ‘X’s 
look like the feathers on the back of an arrow that is pointing away from you, so the direction is away from you.  

In the example on the left, the magnetic field is going into the page on the right and out of the page on the left.  
When the direction of the current is flipped so is the direction of the magnetic field.  To calculate the strength of 
the magnetic field we use the equation 

𝐵 = $%&
'()

, 
 
where 𝐵 is the magnetic field strength, 𝜇+ is the permeability of free space (4𝜋 × 1012), 𝐼 is the current and 𝑟 is 
the minimum distance to the wire.  Thus the stronger the current and the smaller the radius of the wire, the 
stronger the magnetic field.  
 
If we tightly wrap a long wire around a hollow cylinder we create a solenoid.  The coil must be much longer than 
the diameter.  A magnetic field is produced when the current passes through the coil of wire. Since the wires are 
tightly wound, the magnetic field inside the coil is essentially uniform.  It also acts like a bar magnet since the 
magnetic field outside the coil is weak. As in a single wire, the direction of the magnetic field depends on the 
direction of the current in the wire.  
 
In the solenoid we can use the Right Hand Rule (slightly different to the Right Hand Palm Rule) to determine the 
direction of the magnetic field.  This time, our fingers wrap around the coil in the direction of the current flow and 
our thumb points in the direction of the magnetic field.  To calculate the strength of the magnetic field for a solenoid 
we use the equation  
 

𝐵 = $%4&
5

, 
 
where 𝑁 is the number of coils, 𝐼	is the current and 𝐿 is the length of the solenoid.  
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EXAMPLE 
A wire is wound around a hollow cylinder 500 times to create a solenoid.  The solenoid has a length of 0.5𝑚.  A 
current of 12𝐴 is passing through the wire.  In the diagram below, add the direction of the magnetic field.  What is 
the magnitude of the magnetic field?  
 

Þ Firstly, adding in the direction of the magnetic field.  We use the Right Hand Rule, wrapping our fingers 
around the coil in the direction of the current, then our thumb is pointing in the direction of the magnetic 
field.  Thus we find:  

Þ Now, to calculate the magnitude of the magnetic field. Let’s start by writing down all the variables we have 
so we can sub them into the equation:  

Variable  Value 
𝜇+ 4𝜋 × 1012 
𝐼 12A 
𝐿 0.5m 
𝑁 500 turns  
𝐵 ? 
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